R - Forecasting with ARIMA: Difference between revisions
												
				Jump to navigation
				Jump to search
				
Cesar Chew (talk | contribs) No edit summary  | 
			
(No difference) 
 | 
Latest revision as of 16:52, 25 November 2014
Moving Average
- Smoothing with Moving Average
 
 plot(ma(rawdata$Price,order=2),type="l")
 lines(ma(rawdata$Price,order=4),type="l",col="blue")
 lines(ma(rawdata$Price,order=12),type="l",col="red")
Autocorrelation Function
 acf(rawdata$Price)
Seasonality
 price.ts <- ts(rawdata$Price,frequency=12) 
 seasonplot(price.ts)
Autoregression
- AR(p) - autoregressive model of order p
 - - parameters of the model
 - a constant
 - white noise
 
 rawdata <- read.table("http://training-course-material.com/images/1/19/Sales-time-series.txt",h=T)
 rawdata$Date <- as.Date(rawdata$Date)
 plot(rawdata$Price,type="l",xlim=c(1,200))
 # Build a model (try different methods)
 model <- ar(rawdata$Price)
 # Predict
 pr = predict(model, n.ahead=100)
 # add prediction to the plot
 lines(pr$pred,col="red")
 # Increase the order
 model <- ar(rawdata$Price,order.max=40,aic=FALSE)
 pr = predict(model, n.ahead=100)
 lines(pr$pred,col="blue")
 # Change the method
 model <- ar(rawdata$Price,order.max=40,aic=FALSE,method="burg")
 pr = predict(model, n.ahead=100)
 lines(pr$pred,col="green")