
Web Services Basics for Non-Programmers

Web Services Basics for Non-Programmers

Copyright © 2015 NobleProg™. All Rights Reserved. www.nobleprog.us

Contents

 1 Service Oriented Architecture

 2 SOA Governance

 3 Introduction to Web Services

o 3.1 Why Do We Need Web Services

 4 TCP/IP

o 4.1 Internet Protocol (IP)

o 4.2 Transmission Control Protocol (TCP)

o 4.3 Programming Sockets

 5 HTTP and XML - What is the whole buzz about

o 5.1 HTTP - HyperText Transfer Protocol

 5.1.1 Example of an HTTP request

 5.1.2 Example of an HTTP response

o 5.2 eXtensible Markup Language

 5.2.1 Example of XML

 5.2.2 XML Explanation

 6 Simple Object Access Protocol (SOAP)

o 6.1 Examples of SOAP Request and Response

 7 Web Services Definition Language (WSDL)

o 7.1 Elements of a WSDL

o 7.2 WSDL Example

 8 Universal Description, Discovery, and Integration (UDDI)

 9 WS-* Profiles - what are these

http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Service_Oriented_Architecture
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#SOA_Governance
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Introduction_to_Web_Services
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Why_Do_We_Need_Web_Services
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#TCP.2FIP
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Internet_Protocol_.28IP.29
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Transmission_Control_Protocol_.28TCP.29
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Programming_Sockets
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#HTTP_and_XML_-_What_is_the_whole_buzz_about
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#HTTP_-_HyperText_Transfer_Protocol
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Example_of_an_HTTP_request
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Example_of_an_HTTP_response
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#eXtensible_Markup_Language
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Example_of_XML
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#XML_Explanation
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Simple_Object_Access_Protocol_.28SOAP.29
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Examples_of_SOAP_Request_and_Response
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Web_Services_Definition_Language_.28WSDL.29
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Elements_of_a_WSDL
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#WSDL_Example
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Universal_Description.2C_Discovery.2C_and_Integration_.28UDDI.29
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#WS-.2A_Profiles_-_what_are_these
http://training-course-material.com/training/File:Nobleprog.svg

 10 Representational State Transfer (REST)

o 10.1 four basic design principles

 10.1.1 Use HTTP Methods Explicitly

 10.1.2 Be Stateless

 10.1.3 Expose Directory Structure-like URIs

 10.1.4 Transfer request using XML, JavaScript Object Notation (JSON),

or both

 11 JavaScript Object Notation (JSON)

 12 The XML Technology

o 12.1 DTDs

o 12.2 Schemas

 13 eXtensible Stylesheet Language Transformations (XSLT)

 14 XML Processing/Parsing in the Code

 15 Alternatives to SOAP and WSDL

 16 References

Service Oriented Architecture

 Service Oriented Architecture (SOA) is a software architectural style

o It uses services that are available in a network such as the web to build

applications

o Services are implementations of units of well defined business functionality

o Web Services are a particular implementation of an SOA architecture

 Web Services use open standards such as

 TCP/IP - Transmission Control Protocol and Internet Protocol

 HTTP - HyperText Transfer Protocol, the foundation for

communication on the World Wide Web

 XML - Extensible Markup Language, a language for defining data

 SOAP - Simple Object Access Protocol, a specification for

exchanging data

References

Oracle on Service Oriented Architechure (SOA) and Web Services

SOA Governance

 Generally it is necessary to exercise control over web services

o The functions of each service

o prevention of duplicate services

o Approval of new Services

o Documentation of the services available beyond the simple WSDL description

 Written documentation describing the services in detail

 Policies regarding SOA (remembering that web services are part of SOA)

http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Representational_State_Transfer_.28REST.29
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#four_basic_design_principles
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Use_HTTP_Methods_Explicitly
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Be_Stateless
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Expose_Directory_Structure-like_URIs
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Transfer_request_using_XML.2C_JavaScript_Object_Notation_.28JSON.29.2C_or_both
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Transfer_request_using_XML.2C_JavaScript_Object_Notation_.28JSON.29.2C_or_both
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#JavaScript_Object_Notation_.28JSON.29
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#The_XML_Technology
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#DTDs
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Schemas
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#eXtensible_Stylesheet_Language_Transformations_.28XSLT.29
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#XML_Processing.2FParsing_in_the_Code
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#Alternatives_to_SOAP_and_WSDL
http://training-course-material.com/training/Web_Services_Basics_for_Non-Programmers#References
http://www.oracle.com/technetwork/articles/javase/soa-142870.html

 Service level agreements between groups

 Responsibilities of managers and development groups

o Prevention of the proliferation of unused or unusable web services

o Standards for web services

o Decision making authorities

o There are software application built to help with these tasks

o In many organizations these processes are ad-hoc and instantiate as the need

occurs

 It is useful to define the processes purposefully if there are going to be

many web services

References

Wikipedia on SOA Governance

IBM on SOA Governance

Introduction to Web Services

 Web Services are used to exchange data between web applications

 World Wide Web Consortium (W3C) the international open standard organization

defines a web service as:

A software system designed to support interoperable machine-to-machine interaction

over a network

 Generally the data exchange is focused on a particular need, small and contained

 The returned data is usually standardized as either XML or JSON

o XML and JSON are well known formats for exchanging data

o However, other formats can be used and could be proprietary

 A Web Server generally has several components such as

o Some logic on a web server that returns information and may manipulate that

information before returning it

 Examples would be

 Currency calculating components that return various currency

values

 Interest calculating components that return interest rates or dollar

amounts

 Components that return savings or checking values

 Components that check logging in user information

o An interface that describes how to put a request to the service and what is

expected as the result

o A method of connecting to the service to make a request and receive a response

 In general this requires client and server side programming of components

https://en.wikipedia.org/wiki/SOA_governance
http://www-01.ibm.com/software/solutions/soa/gov/

Why Do We Need Web Services

 Organizations usually have multiple software systems

o Web Services allow the sharing of data between these systems

 Larger systems are distributed, data exists in many locations

 A markup language is need to pass data so it can be understood

 Standardized protocols are used making it less expensive to implement sharing

 Low cost since it uses the normal web protocol (HTTP) for network transfers

References

Wikipedia on Simple Object Access Protocol (SOAP)

Wikipedia on Internet Protocol (IP)

Wikipedia on Transmission Control Protocol (TCP)

TCP/IP

Internet Protocol (IP)

 Internet Protocol (IP) is the principal communications protocol for relaying data across a

network

 IP consists of

o Addressing Mechanisms - identifying a computer with an IP address

o Routing functions - how to deliver a packet to a specific destination from a

specific source

o Packets formats - the structure of a packet of data being routed

o Location services - find the location of a computer on the network

Addressing

 An IP address looks like 123.456.789.012 - four groups of three numbers separated by

dots

 Domain names - IP addresses are complex looking so Domain Names are used instead

o They are what we are used to seeing i.e. google.com or microsoft.com

o Human readable

o Domain Name Services (DNS) used to lookup IP addresses given a domain name

o Users are allowed to buy and register domain names of their choice (if not already

in use)

o Addressing uses a host IP (or domain name) and a port

 Multiple applications may connect to the same computer, i.e. FTP, Web

Browsers, Database connections, etc.

 All applications use the same IP (or domain name)

 They use different ports making them distinct

https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Routing

 IP is connectionless - does not depend on a direct connection to the destination

o It just sends off packets to a router with no concern for whether they arrive at the

destination

o The network routers direct the packets towards the destination

 A router will send to other routers depending on volume, delays, errors,

etc.

 The packets make up the communication between source and destination

 The packets may go individually along different routes, the routers choose

 The packets are reassembled into the total communication at the

destination (but not by IP)

Packet Formats

 Communications are split into a set of packets

 The packets are transmitted over the network

 The packets have a format

o Tutorials Point discussion of Packet format

Packet Header Format From Wikipedia

 Data follows the Header

 Header is actually in Binary

o Shown below so that it can be understood

 Note the source and destination addresses (IP addresses)

References

Packet format

Wikipedia on Internet Protocol

Wikipedia on IPv4 Packet Structure

http://www.tutorialspoint.com/ipv4/ipv4_packet_structure.htm
http://www.tutorialspoint.com/ipv4/ipv4_packet_structure.htm
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/IPv4#Packet_structure

Transmission Control Protocol (TCP)

 The TCP header and data go inside an IP Packet as its data

 TCP provides

o Reliable communication between source and destination

 At source sequence numbers are assigned to packets

 Expects a positive acknowledgement (ACK) from destination for each

packet

 If ACK not received by timeout then retransmits

o Flow Control

 Destination sends back to source the number of bytes it can still receive

without overflowing buffer

o Order assembly of the packets received at the destination

 Sequence number is used to order the packets at destination

o Re-request of packets that go missing (IP does not guarantee delivery)

 Source re-sends packets if ACK not received in timeout

o Multiplexing

 Multiple applications can communicate between sources and the

destination computer

 The port numbers are used, separate ones for various applications

o Error checking of the data

Format of a TCP header from Wikipedia

 Data follows the header

 Note the source and destination Ports are here

 This TCP packet would actually be encoded in binary

o Shown here for in a form to make it understandable

References

Wikipedia on Transmission Control Protocol

Programming Sockets

 Sockets are the underlying programming construct for TCP/IP communication

o They allow a computer application (the destination) to connect to a source server

o The host domain name or IP address is specified

o The port number on the host is specified

o The socket is opened

o Communication occurs between the server (source) and the application

(destination)

o The socket is closed

 Everything else is built on top of this foundation

 HTML is sent over a socket from a web server

 SOAP is sent over a socket from a web service

 WSDL is retrieved over a socket from a web service

 UDDI is enabled over a socket from a web service directory

Example of the Client Code for a Socket

 Example taken from TutorialsPoint and changed

import java.net.*;

import java.io.*;

public class SampleClient

{

 public static void main(String [] args)

 {

 String serverName = someServer.com; // the assigned name of a server

 int port = 5678; // ports go up to 65000

 try

 {

 System.out.println("Connecting to " + serverName

 + " on port " + port);

 Socket clientSocket = new Socket(serverName, port);

 System.out.println("Just connected to "

 + client.getRemoteSocketAddress());

 OutputStream outToServer = clientSocket.getOutputStream();

 DataOutputStream out =

 new DataOutputStream(outToServer);

 out.writeUTF("Hello from "

 + clientSocket.getLocalSocketAddress());

 InputStream inFromServer = clientSocket.getInputStream();

 DataInputStream in =

 new DataInputStream(inFromServer);

 System.out.println("Server says " + in.readUTF());

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

 clientSocket.close();

 }catch(IOException e)

 {

 e.printStackTrace();

 }

 }

}

Example of the Client Code for a Socket

 Example taken from TutorialsPoint and changed

import java.net.*;

import java.io.*;

public class SampleServer extends Thread

{

 private ServerSocket serverSocket;

 public SampleServer(int port) throws IOException

 {

 serverSocket = new ServerSocket(port);

 serverSocket.setSoTimeout(10000);

 }

 public void run()

 {

 while(true)

 {

 try

 {

 System.out.println("Waiting for client on port " +

 serverSocket.getLocalPort() + "...");

 Socket server = serverSocket.accept();

 System.out.println("Just connected to "

 + server.getRemoteSocketAddress());

 DataInputStream in =

 new DataInputStream(server.getInputStream());

 System.out.println(in.readUTF());

 DataOutputStream out =

 new DataOutputStream(server.getOutputStream());

 out.writeUTF("Thank you for connecting to "

 + server.getLocalSocketAddress() + "\nGoodbye!");

 server.close();

 }catch(SocketTimeoutException s)

 {

 System.out.println("Socket timed out!");

 break;

 }catch(IOException e)

 {

 e.printStackTrace();

 break;

 }

 }

 }

 public static void main(String [] args)

 {

 int port = 7890;

 try

 {

 Thread t = new SampleServer(port);

 t.start();

 }catch(IOException e)

 {

 e.printStackTrace();

 }

 }

}

References TutorialsPoint on Sockets

HTTP and XML - What is the whole buzz

about

 HTTP defines the basic protocols for the World Wide Web

o It defines the request format for web page requests

o It defines the response format for pages coming back to browsers (Firefox,

Chrome, IE, etc.)

o One part of the defined information is the status code such as 404 File Not Found,

200 successful, etc

 XML defines a basic markup language for building documents that are human and

machine readable

References

Wikipedia on Extensible Markup Language (XML)

Wikipedia on HyperText Transfer Protocol (HTTP)

HTTP - HyperText Transfer Protocol

 Created at CERN by Tim Berners-Lee and his team

o This was the original concept of the web server and a browser

o They also defined the markup language HTML which was very similar to XML

o The original protocol define only the operation GET which would get a page from

a server

Example of an HTTP request

The request sent to a web server would be similar to the following:

http://www.tutorialspoint.com/java/java_networking.htm
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

GET /index.html HTTP/1.1

Host: www.example.com

Example of an HTTP response

The response from the server would be similar to the following:

HTTP/1.1 200 OK

Date: Mon, 23 May 2005 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

ETag: "3f80f-1b6-3e1cb03b"

Content-Type: text/html; charset=UTF-8

Content-Length: 138

Accept-Ranges: bytes

Connection: close

<html>

<head>

 <title>An Example Page</title>

</head>

<body>

 Hello World, this is a very simple HTML document.

</body>

</html>

 Looking at the access log for a web server such as Tomcat

o The requests can be seen

127.0.0.1 - - [20/Feb/2015:13:31:14 -0500] "GET /Web_Project_1/userForm.jsp

HTTP/1.1" 200 592

127.0.0.1 - - [20/Feb/2015:13:31:14 -0500] "POST

/Web_Project_1/actionPage.jsp HTTP/1.1" 500 2340

127.0.0.1 - - [20/Feb/2015:13:31:14 -0500] "GET

/Web_Project_1/anotherPage.jsp HTTP/1.1" 200 400

eXtensible Markup Language

 A markup language that defines a set of rules for encoding documents in human and

machine readable format

 A free open standard

 It can define arbitrary data structures

 based upon the concept of elements (tags) and parent child relationships between

elements

 It is widely used because of its simplicity, readability, and ability to represent most data

Example of XML

Define an XML document for a book reference (simplified)

<?xml version="1.0" encoding="UTF-8"?>

<book>

 <author>Leroy Jones</author>

 <published>August 4, 2014</published>

 <title>Trees of America</title>

</book>

XML Explanation

 XML declaration - declares some information about the xml for example

<?xml version="1.0" encoding="UTF-8"?>

 Markup - generally in XML markup begins with a < and ends with a >

 Content - content are strings of characters that are not markup

 Tags - Markup that begins with a < and ends with > are called tags

o There are three types of tags in general

 Start Tags - for example <book>

 End Tags - for example </book>

 Empty Element Tags - for example <line-break/>

 Elements - constructs that start with a Start Tag and end with an End Tag

o For example <author>Susan Jones</author> is the author element of the

document

o Elements can have sub-elements

 These are said to be in a parent child relationship

 Attributes - Start Tags and Empty Element Tags can have attributes

o Attributes are name value pairs separated by an equal sign (=)

o There can be several attributes on one tag

o An example of an Empty Element Tag with attributes

Simple Object Access Protocol (SOAP)

 SOAP defines the XML elements that are used to communicate between the client and

server

 The SOAP XML moves on the network between the client and server

 SOAP requests and responses move over HTTP

o This makes it easier to move messaging through firewalls

o The HTTP port is normally open in the firewall

o HTTP servers to receive the messages are commonplace

o Programming languages have Application Programming Interfaces (API) the

work with HTTP

o SOAP messages are not Operating System or programming language dependent

 SOAP contains Header, Envelope, and Body

Examples of SOAP Request and Response

The Soap Request

Header: POST /Hello_Service/services/Hello HTTP/1.0

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<helloName xmlns="http://nobleprog.com">

<name>Thomas</name>

</helloName>

</soapenv:Body>

</soapenv:Envelope>

The Soap Response

Header: HTTP/1.1 200 OK

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>

<helloNameResponse xmlns="http://nobleprog.com">

<helloNameReturn>Hello there Thomas</helloNameReturn>

</helloNameResponse>

</soapenv:Body>

</soapenv:Envelope>

 Note the XML Namespace xmlns:soapenv it gives the definition of the SOAP XML

o That schema can be viewed in a browser by going to the URL

 Then do a view source for the page in the browser

References

W3Schools on SOAP

Web Services Definition Language (WSDL)

 An XML based protocol that defines information exchanges between a server and a client

 WSDL Describes a web service and the operations of that service

 Used to locate web services

 An open standard

 It usually can be retrieved and viewed to determine how to access and use a web service

o A client application can be written using the WSDL

o For an organization using internal web services

http://www.w3schools.com/webservices/ws_soap_intro.asp

 The WSDL is a part of the documentation of a web service

 There may be further documentation given to client side developers

Elements of a WSDL

The main elements of a WSDL are:

 definitions - the container for the other major elements

 types - the data type definitions

 message - a typed definition of the data being communicated

 portType - a set of operations supported by the endpoint

 binding - the protocol and data format for a port type

 service - the service definition such as service URL

WSDL Example

An Example of a WSDL XML Document

Developed in Eclipse IDE using Eclipse Web Services Tutorial
<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://nobleprog.com"

 xmlns:apachesoap="http://xml.apache.org/xml-soap"

xmlns:impl="http://nobleprog.com"

 xmlns:intf="http://nobleprog.com"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!--WSDL created by Apache Axis version: 1.4 Built on Apr 22, 2006

(06:55:48

 PDT) -->

 <wsdl:types>

 <schema elementFormDefault="qualified"

targetNamespace="http://nobleprog.com"

 xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="helloName">

 <complexType>

 <sequence>

 <element name="name" type="xsd:string" />

 </sequence>

 </complexType>

 </element>

 <element name="helloNameResponse">

 <complexType>

 <sequence>

 <element name="helloNameReturn" type="xsd:string" />

 </sequence>

 </complexType>

 </element>

 </schema>

 </wsdl:types>

http://eclipse.org/webtools/community/education/web/t320.php

 <wsdl:message name="helloNameResponse">

 <wsdl:part element="impl:helloNameResponse" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="helloNameRequest">

 <wsdl:part element="impl:helloName" name="parameters">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="Hello">

 <wsdl:operation name="helloName">

 <wsdl:input message="impl:helloNameRequest"

name="helloNameRequest">

 </wsdl:input>

 <wsdl:output message="impl:helloNameResponse"

 name="helloNameResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="HelloSoapBinding" type="impl:Hello">

 <wsdlsoap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http" />

 <wsdl:operation name="helloName">

 <wsdlsoap:operation soapAction="" />

 <wsdl:input name="helloNameRequest">

 <wsdlsoap:body use="literal" />

 </wsdl:input>

 <wsdl:output name="helloNameResponse">

 <wsdlsoap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="HelloService">

 <wsdl:port binding="impl:HelloSoapBinding" name="Hello">

 <wsdlsoap:address

 location="http://localhost:8080/Hello_Service/services/Hello"

/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Universal Description, Discovery, and

Integration (UDDI)

 UDDI is intended to be a directory system where web services can be looked up

 Artifacts of UDDI

o Business (White Pages) - a description of a business and the UDDI key assign to a

business

o Service (Yellow Pages) - a web service provided for/by the business

 There can be many services for a business

o binding - location and access information for a web service

o tModel (Green Pages) - descriptions and links to external descriptions

 UDDI does not seem to have been as successful as first envisioned

 It is used at some companies

Hands on Exercise

 Look up functioning UDDI software that can be purchased or obtained through

open source organizations.

 Look up functioning public UDDI directories.

 Look up or think about alternatives to UDDI

 Discuss UDDI after looking up the above topics.

References

Stack Overflow on Non-use of UDDI

Wikipedia on UDDI

WS-* Profiles - what are these

 Web Services Interoperability (WS-I) profile

 Expose web services through common protocols

o So that they are interoperable

o For example are the following protocols interoperable

 WSDL XML elements

 SOAP XML elements

 UDDI (if used) XML elements

 It is more a question of using commercial software that is WS_I compliant

o Some examples of WS-I Compliant software

 Oracle WebLogic Server

 IBM Websphere

 Apache CXF

 GlassFish Metro

 ASP.NET 2.0

 JBossWS

 For example a business uses both JBoss and WebSphere as web servers

o Are the web services on each interoperable

http://stackoverflow.com/questions/1491926/are-there-any-public-uddi-registries-available
https://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration

References

Wikipedia on WS-I Basic Profile

IBM on WS-I

Why is it Important to be WS-I Compliant?

Representational State Transfer (REST)

 REST is quickly overtaking SOAP and WSDL as the method of choice for web services

 It focuses upon resources and the retrieval and manipulations of them

 Much simplier

 UDDI is not used

 Should be documented well using other methods, i.e. Wiki, Word Docs, JavaDocs or

other coding documentation, etc.

four basic design principles

 See IBM article in References below

o Use HTTP methods explicitly.

o Be stateless.

o Expose directory structure-like URIs.

o Transfer request using XML, JavaScript Object Notation (JSON), or both.

Use HTTP Methods Explicitly

 HTTP has all of the methods needed to retrieve and manipulate resources

o Get - retrieve a resource

o Post - create a resource

o Delete - delete a resource

o Put - update or modify a resource

 The HTTP methods should be used correctly

o An example of using the methods correctly

Bad way to add a user

 There are two problems here

o

 Using GET to add a resource

 Using query strings to specify data

GET /adduser?name=Robert HTTP/1.1

Better way to add a user

https://en.wikipedia.org/wiki/WS-I_Basic_Profile
http://www.ibm.com/developerworks/webservices/tutorials/ws-understand-web-services6/
http://stackoverflow.com/questions/15950938/why-is-it-important-to-be-ws-i-basic-profile-compliant

 The solution now uses

o PUT to add a resource

o XML to specify the data

 JSON could have been used rather than XML

POST /users HTTP/1.1

Host: myserver

Content-Type: application/xml

<?xml version="1.0"?>

<user>

 <name>Robert</name>

</user>

Be Stateless

 The web service server should not have to save any state to fulfill consecutive requests

from the same client

 The server can send requests on to other servers without worrying about state

 As an example view or explain JSESSIONID (Can be viewed in JMeter)

o JSESSIONID is how a server built using Java tracks the user and creates state

 The server may set options so that responses are not cached by the client

 Clients send requests that are complete and independent and therefore do not rely on state

at the server

Expose Directory Structure-like URIs

 Commonly REST tries to make simple URIs (URL)

 The URIs are intuitive and easy to guess as to their meaning

 They look like a folder path rather than having a query string

 The folder like path is hierarchical (in its nature)

o Each succeeding sub-folder is a sub-characteristic of its parent

o There is a constant pattern that allows similar URIs to be built

 They refer to resources

o For example http://someServer.com/employee/19876

 Rather than http://someServer.com/getEmployee?id=19876

Transfer request using XML, JavaScript Object Notation (JSON), or both

 Try not to use query strings to transfer requests or data

 Transfer data in XML, JSON, or HTML

 The data should be human readable and simple to read

References Very Useful Discussion of REST by IBM Dr. Dobbs on RESTful Web Services

http://someserver.com/employee/19876
http://someserver.com/getEmployee?id=19876
http://www.ibm.com/developerworks/library/ws-restful/
http://www.drdobbs.com/web-development/restful-web-services-a-tutorial/240169069

JavaScript Object Notation (JSON)

 JSON and XML are:

o Human readable

o Can be transmitted over a web request or response

o Hierarchical representation of data

o Can be parsed to get field names and data

 JSON advantages

o Shorter

o Doesn't have end tags

o easier to read by humans

 JSON data is in name value pairs

o Name gives a variable name in the code

o Value gives the data for the variable in the code

o Examples

 "nameOfString": "string value"

 "nameOfFloatNumber": 1234.67

 "nameOfBoolean": true

 JSON mimics JavaScript objects

o For example a JavaScript object can be declared as:

var person = {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"};

JSON representation of a resource.

{

 "id": "123",

 "Firstname": "John",

 "Lastname": "Smith",

 "Email": "j.smith@mycompany.com",

 "Country": "England"

}

XML representation of a resource.

<Employee>

 <id>123</id>

 <Firstname>John</Firstname>

 <Lastname>Smith</Lastname>

 <Email>j.smith@mycompany.com</Email>

 <Country>England</Country>

</Employee>

References

W3Schools JSON Tutorial

The XML Technology

 As shown above XML is

o A set of elements and attributes

o Hierarchical

o Is human readable

o Is more complex than JSON

 XML also

o Maps to Objects well in Object Oriented languages

o Can be further defined using a DTD or Schema

o Can be translated to and from objects by well known programming APIs

DTDs

 For DTDs XML Documents are made up from

o Elements - the main building blocks

 i.e. in XHTML

<body> </body> and <table> </table>

o Attributes - extra information about elements placed within the opening tag

 i.e. in XHTML

Google Website href is an

attribute

o Entities - constructs such as

< for the less than sign

o PCDATA - parsed character data, data that will be parsed by a parser

 a parser would find special characters and represent them correctly

o CDATA - character data

 Tags and entity data within the character data will not be used as markup

or entities

Declaring Elements

<!ELEMENT element-name(child1, child2)>

 Examples

<!ELEMENT book (title, author, isbn)>

<!ELEMENT title (#PCDATA)>

http://www.w3schools.com/json/

Declaring Attributes for Elements

<!ATTLIST element-name attribute-name attribute-type attribute-value>

 element-name matches the name of a defined element in the DTD

 Example

<!ATTLIST book pubYear CDATA #REQUIRED>

 Data for an element can be child elements or attributes

<book title="The book's title as an attribute"> </book>

<book>

 <title>The Book's title as an element</title>

</book>

References

W3Schools DTD Tutorial

Schemas

 XML Schemas are an alternative to DTDs

 XML Schemas are more powerful in defining an XML document than DTDs

 Schemas are themselves XML documents and have a defining DTD

 They have a more complex system of types, such as integers, strings and floats

 Schemas define

o Elements

o Attributes

o child elements

o order of child elements

o number of child elements

o empty elements

o Data types for elements and attributes

o Default and fixed values for elements and attributes

The following page at W3Schools show the differences between DTDs and Schemas fairly well

Schemas vs DTDs

The following page at W3Schools shows how to reference the schema in your XML to allow

validation

http://www.w3schools.com/dtd/
http://www.w3schools.com/schema/schema_howto.asp

How to reference the Schema in the XML

 note that the schema would be placed on a web server so that it can be retrieved

Hands on Exercise

 Using the following XML write a DTD and a Schema that defines the XML

 Show how to reference the DTD or Schema within the XML for validation purposes

<book isbn="123456">

 <title>Some Title</title>

 <author>Author Name</author>

 <publisher>Publisher Name</publisher>

 <pages>234</pages>

</book>

References

W3Schools on Schemas

Differences between Schema and DTD

Another on Differences between Schema and DTD

eXtensible Stylesheet Language

Transformations (XSLT)

 Used to transform XML documents into other forms.

o For example transform XML to XHTML

 XSLT uses XPath to locate elements in the XML

 A transformation template is then applied to the element

The following W3Schools page shows how the transform would work fairly well

XSLT Example Transformation

References

W3Schools XSLT tutorial

http://www.w3schools.com/schema/schema_schema.asp
http://www.w3schools.com/schema/
http://www.differencebetween.net/technology/difference-between-xml-schema-and-dtd/
http://www.cookingwithxml.com/dtdvschema.htm
http://www.w3schools.com/xsl/xsl_transformation.asp
http://www.w3schools.com/xsl/

XML Processing/Parsing in the Code

 It is convenient to move between XML and objects

o In an object oriented programming language

 It is also possible to call event handlers as elements in XML documents are discovered

 There are numerous code libraries that can be used

o Java Architecture for XML Binding (JAXB)

o Java Architecture for XML Processing (JAXP)

 SAX uses a set of callback event handlers

 They are called as the document is parsed and elements found

 DOM builds a object model of the document elements

 There are XML parsers for most programming languages

References

XML Parsers for various languages

Alternatives to SOAP and WSDL

 HTTP with XML

 HTTP with JSON

 RMI - Remote Method Invocation in Java

 CORBA - from way back in the 1990s

 RESTful - Discussed above

Hands on Exercise

 Lookup alternatives to WSDL and SOAP and Discuss

 Note that these are language dependent (i.e. Java, C++, C#, Python, etc.)

References

Wikipedia on Web Service Protocols

References

Wikipedia on Web Services

W3 Schools on Web Services

Webopedia on Web Services

TutorialsPoint on Web Services

IBM Web Services Tutorial

http://www.xml.com/pub/rg/XML_Parsers
http://en.wikipedia.org/wiki/List_of_web_service_protocols
https://en.wikipedia.org/wiki/Web_service
http://www.w3schools.com/webservices/
http://www.webopedia.com/TERM/W/Web_Services.html
http://www.tutorialspoint.com/webservices/
http://www.ibm.com/developerworks/webservices/tutorials/ws-understand-web-services1/ws-understand-web-services1.html

